Resilience of epidemics for SIS model on networks.

نویسندگان

  • Dan Lu
  • Shunkun Yang
  • Jiaquan Zhang
  • Huijuan Wang
  • Daqing Li
چکیده

Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations and may bounce back to its original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate λ2 during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is λ1 in the rest of time. Noticing that when λ1 is below λc, there is no resilience in the SIS model. Through simulations and theoretical analysis, we find that even for λ2 < λc, epidemics eventually could bounce back if the control duration is below a threshold. This critical control time for epidemic resilience, i.e., cdmax, seems to be predicted by the diameter (d) of the underlying network, with the quantitative relation cdmax ∼ dα. Our findings can help to design a better mitigation strategy for epidemics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of subgraphs in epidemics over finite-size networks under the scaled SIS process

In previous work, we developed the scaled SIS process, which models the dynamics of SIS epidemics over networks. With the scaled SIS process, we can consider networks that are finite-sized and of arbitrary topology (i.e., we are not restricted to specific classes of networks). We derived for the scaled SIS process a closed-form expression for the time-asymptotic probability distribution of the ...

متن کامل

SIS epidemics on Triadic Random Graphs

It has been shown in the past that many real-world networks exhibit community structures and non-trivial clustering which comes with the occurrence of a notable number of triangular connections. Yet the influence of such connection patterns on the dynamics of disease transmission is not fully understood. In order to study their role in the context of Susceptible-Infected-Susceptible (SIS) epide...

متن کامل

Improving the resilience of active distribution networks by optimal charging/discharging management of electric vehicles in parking lots

In the event of a severe incident with a high impact and low probability of occurrence, distribution networks may be separated from upstream networks and several feeders may be disconnected simultaneously within the distribution networks. In such circumstances, to maximize the resilience of the distribution networks and to prevent long-term global outages, they are reconfigured and islanded to ...

متن کامل

A covering-graph approach to epidemics on SIS and SIS-like networks.

In this paper, we introduce a new class of epidemics on networks which we call SI(S/I). SI(S/I) networks differ from SIS networks in allowing an infected individual to become reinfected without first passing to the susceptible state. We use a covering-graph construction to compare SIR, SIS, and SI(S/I) networks. Like the SIR networks that cover them, SI(S/I) networks exhibit infection probabili...

متن کامل

Susceptible-infected-susceptible epidemics on networks with general infection and cure times.

The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2017